Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 466, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114486

RESUMO

Research suggests that ischemic glycolysis improves myocardial tolerance to anoxia and low-flow ischemia. The rate of glycolysis during ischemia reflects the severity of the injury caused by ischemia and subsequent functional recovery following reperfusion. Histone H2AK119 ubiquitination (H2Aub) is a common modification that is primarily associated with gene silencing. Recent studies have demonstrated that H2Aub contributes to the development of cardiovascular diseases. However, the underlying mechanism remains unclear. This study identified Hsp27 (heat shock protein 27) as a H2Aub binding protein and explored its involvement in mediating glycolysis and mitochondrial function. Functional studies revealed that inhibition of PRC1 (polycomb repressive complex 1) decreased H2Aub occupancy and promoted Hsp27 expression through inhibiting ubiquitination. Additionally, it increased glycolysis by activating the NF-κB/PFKFB3 signaling pathway during myocardial ischemia. Furthermore, Hsp27 reduced mitochondrial ROS production by chaperoning COQ9, and suppressed ferroptosis during reperfusion. A delivery system was developed based on PCL-PEG-MAL (PPM)-PCM-SH (CWLSEAGPVVTVRALRGTGSW) to deliver PRT4165 (PRT), a potent inhibitor of PRC1, to damaged myocardium, resulting in decreased H2Aub. These findings revealed a novel epigenetic mechanism connecting glycolysis and ferroptosis in protecting the myocardium against ischemia/reperfusion injury.

2.
Eur J Pharmacol ; 959: 176081, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797674

RESUMO

Cardiac microvascular dysfunction contributes to cardiac hypertrophy (CH) and can progress to heart failure. Lutein is a carotenoid with various pharmacological properties, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. Limited research has been conducted on the effects of lutein on pressure overload-induced CH. Studies have shown that CH is accompanied by ferroptosis in the cardiac microvascular endothelial cells (CMECs). This study aimed to investigate the effect of lutein on ferroptosis of CMECs in CH. The transcription factor interferon regulatory factor (IRF) is associated with immune system function, tumor suppression, and apoptosis. The results of this study suggested that pressure overload primarily inhibits IRF expression, resulting in endothelial ferroptosis. Administration of lutein increased the expression of IRF, providing protection to endothelial cells during pressure overload. IRF silencing downregulated solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, leading to the induction of ferroptosis in CMECs. Lutein supplementation suppressed endothelial ferroptosis by upregulating IRF. These data suggest that IRF may function as a transcription factor for SLC7A11 and that lutein represses ferroptosis in CMECs by upregulating IRF expression. Therefore, targeting IRF may be a promising therapeutic strategy for effective cardioprotection in patients with CH and heart failure.


Assuntos
Ferroptose , Insuficiência Cardíaca , Humanos , Células Endoteliais , Luteína/farmacologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Células Cultivadas , Cardiomegalia/metabolismo , Insuficiência Cardíaca/patologia
3.
Environ Sci Pollut Res Int ; 30(42): 95892-95900, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37561300

RESUMO

The aim of this study is to examine the long-term effects of prenatal and early-life WIFI signal exposure on neurodevelopment and behaviors as well as biochemical alterations of Wistar rats. On the first day of pregnancy (E0), expectant rats were allocated into two groups: the control group (n = 12) and the WiFi-exposed group (WiFi group, n = 12). WiFi group was exposed to turn on WiFi for 24 h/day from E0 to postnatal day (PND) 42. The control group was exposed to turn-off WiFi at the same time. On PND7-42, we evaluated the development and behavior of the offspring, including body weight, pain threshold, and swimming ability, spatial learning, and memory among others. Also, levels of proteins involved in apoptosis were analyzed histologically in the hippocampus in response to oxidative stress. The results showed that WiFi signal exposure in utero and early life (1) increased the body weight of WiFi + M (WiFi + male) group; (2) no change in neuro-behavioral development was observed in WiFi group; (3) increased learning and memory function in WiFi + M group; (4) enhanced comparative levels of BDNF and p-CREB proteins in the hippocampus of WiFi + M group; (5) no neuronal loss or degeneration was detected, and neuronal numbers in hippocampal CA1 were no evidently differences in each group; (6) no change in the apoptosis-related proteins (caspase-3 and Bax) levels; and (7) no difference in GSH-PX and SOD activities in the hippocampus. Prenatal WiFi exposure has no effects on hippocampal CA1 neurons, oxidative equilibrium in brain, and neurodevelopment of rats. Some effects of prenatal WiFi exposure are sex dependent. Prenatal WiFi exposure increased the body weight, improved the spatial memory and learning function, and induced behavioral hyperactivity of male rats.


Assuntos
Aprendizagem , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Masculino , Animais , Humanos , Ratos Wistar , Encéfalo/metabolismo , Estresse Oxidativo , Hipocampo , Peso Corporal , Efeitos Tardios da Exposição Pré-Natal/metabolismo
4.
J Nutr Biochem ; 104: 108972, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35227883

RESUMO

The molecular characteristics of ferroptosis in cardiac hypertrophy have been rarely studied. Especially, there have been no studies to investigate the regulatory mechanisms of docosahexaenoic acid (DHA) on ferroptosis in cardiac hypertrophy. This study was designed to determine the role of ferroptosis in microvascular injury, and investigate the contribution of DHA in suppressing ferroptosis and preventing pressure overload-mediated endothelial damage. Our results indicated that the expression of interferon regulating factor 3 (IRF3) was primarily inhibited by pressure overload and consequently caused endothelial ferroptosis. Nevertheless, administration of DHA increased IRF3 expression and provided a pro-survival advantage for the endothelial system in the context of pressure overload. Experimental studies clearly showed that inhibition of IRF3 down-regulated SLC7A11 expression, and the latter leaded to the increase in the activities of arachidonate 12-lipoxygenase, which obligated cardiac microvascular endothelial cells to undergo ferroptosis via augmenting lipid peroxides. Interestingly, DHA supplementation suppressed endothelial ferroptosis via up-regulation of IRF3. Taken together, our studies identified the IRF3-SLC7A11-arachidonate 12-lipoxygenase axis as a new pathway responsible for pressure overload-mediated microvascular damage via initiating endothelial ferroptosis. In contrast, DHA treatment up-regulated the expression of IRF3 and thus reduced cellular ferroptosis, conferring a protective advantage to the endothelial system in pressure overload. These findings revealed that targeting IRF3 might be a useful therapeutic strategy for cardioprotection in cardiac hypertrophy and heart failure.


Assuntos
Ferroptose , Animais , Araquidonato 12-Lipoxigenase , Cardiomegalia/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Células Endoteliais , Interferons , Ratos , Regulação para Cima
5.
Mol Ther Nucleic Acids ; 27: 16-36, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34938604

RESUMO

Cardiac microvascular dysfunction is associated with cardiac hypertrophy and can eventually lead to heart failure. Dysregulation of long non-coding RNAs (lncRNAs) has recently been recognized as one of the key mechanisms involved in cardiac hypertrophy. However, the potential roles and underlying mechanisms of lncRNAs in cardiac microvascular dysfunction have not been explicitly delineated. Our results confirmed that cardiac microvascular dysfunction was related to cardiac hypertrophy and ferroptosis of cardiac microvascular endothelial cells (CMECs) occurred during cardiac hypertrophy. Using a combination of in vivo and in vitro studies, we identified a lncRNA AABR07017145.1, named as lncRNA AAB for short, and revealed that lncRNA AAB was upregulated in the hearts of cardiac hypertrophy rats as well as in the Ang II-induced CMECs. Importantly, we found that lncRNA AAB sponged and sequestered miR-30b-5p to induce the imbalance of MMP9/TIMP1, which enhanced the activation of transferrin receptor 1 (TFR-1) and then eventually led to the ferroptosis of CMECs. Moreover, we have developed a delivery system based on neutrophil membrane (NM)-camouflaged mesoporous silica nanocomplex (MSN) for inhibition of cardiac hypertrophy, indicating the potential role of silenced lncRNA AAB (si-AAB) and overexpressed miR-30b-5p as the novel therapy for cardiac hypertrophy.

6.
Zhongguo Zhen Jiu ; 39(10): 1117-23, 2019 Oct 12.
Artigo em Chinês | MEDLINE | ID: mdl-31621267

RESUMO

Except the complete literature of Maishu: Xiajing, Tianhui medical slips unearthed in Chengdu also include a part of literature document on meridian, which was seriously damaged. Both of them were found in the same box together with Yimashu. The title of the document chapter was not found in the residual medical slips. By investigated the textual content, it was discovered that such medical slips were different from the Mawangdui silk books, i.e. Yinyang Shiyimai Jiujing and Zubi Shiyimai Jiujing, Maishu of Zhangjiashan bamboo slips of Han Dynasty, as well as Maishu: Xiajing in Tianhui medical slips. But, the sentences in description are similar to the sentences of Jingmai in Lingshu (Miraculous Pivot), therefore, this residual slips was named as Jingmai (Meridian) by the collator. In the paper, by the comparison of this residual slip chapter with the unearthed literature document on meridian as well as Jingmai in Lingshu, the origin and evolution of meridian theory of traditional Chinese medicine in the Qin and Han dynasties were explained. By taking it as an example, the construction process of classical theory of traditional Chinese medicine was explored.


Assuntos
Acupuntura/história , Meridianos , Livros , China , História Antiga , Humanos , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...